Kinetics studies in laboratory lessons as a project-based learning approach in Chemical Engineering Education

Vicenç Martí ¹ Lourdes Roset ²

¹ ETSEIB, Av. Diagonal, 647, E-08028, Barcelona

² EPSEVG, Av. Victor Balaguer s/n, E-08800, Vilanova i la Geltrú

GOAL AND CONTENTS

The goal of this presentation is to show how projectbased approach applied to experimental could improve the understanding of key chemical engineering concepts and strength theory

- Presentation of the subject and semester data
- Batch results
- Continuous results
- Comparison batch vs continuous

INTRODUCTION

- Bachelor's degree in Chemical Engineering, ETSEIB, UPC
- Experimental subject "Experimentation in Chemical Engineering II" run the 6th semester in parallel with key subjects as Unit operations, Kinetics and reactions and Fluid mechanics

Sixth semester	Experimentation in Chemical Engineering II	4.5
	Fluid Mechanics 🔼	6
	Kinetics and Reactors -	6
	Organisation and Management	4.5
	Project II 🗷	3
	Unit Operations -	6

Opportunity to strength experimental and theoretical concepts!

LAB LESSONS CONSIDERED

Three laboratory lessons considered

- i) Batch Isothermal
- ii) Batch Adiabatic
- iii) Continuous Stirred Tank Reactor (CSTR)

by using the same reaction: anhydride acetic hydrolysis.

The lessons i) and iii) (batch isot. vs continuous) will be compared in the present work

PROJECTS

Projects in this subject were performed with the following objectives:

- Design the conditions to be performed in the lab lesson
- Study-modelize all the experimental data generated in the lab lessons

2 from 4 transversal projects were considered to focus on **isothermal batch** and continuous reactions mentioned before. The objectivesof these specific projects were:

- to explore the potential effect of several experimental factors over results
- to study the order of the reactions (order 1 or 2)
- to obtain kinetic constants (k)
- To obtain energy of activation (E_A) by using Arrhenius expression

STUDENTS DISTRIBUTION

Course 2014-2015:

1st semester: 18 students, 6 lab groups (3), 4 project groups

2nd semester: 25 students, 8 lab groups (3-4), 4 project groups

The students were grouped in <u>lab-groups to perform lab lessons</u> and in <u>project-groups for the project-based approach</u>.

GENERAL METHODOLOGY BOTH LAB LESSONS

Weak acid- strong base titration of **acetic acid** with NaOH 0,1 M and phenolphthalein formed from:

1) hydrolisis

$$C_{A_o} = \frac{C_{NaOH} \cdot V_{(NB)}}{2 \cdot V_{A(NB)}}$$

Main

error in

titration

volum

experimental

2) blocking reaction with aniline

$$C_{A} = \frac{C_{NaOH} \cdot V_{(NB)}}{V_{A(NB)}} - \frac{C_{NaOH} \cdot V_{(B)}}{V_{A(B)}}$$

$$\chi_A = \frac{C_{A_o} - C_A}{C_{A_o}} = 1 - \frac{C_A}{C_{A_o}}$$

EXPERIMENTAL PROCESS

Batch Reactor

Preparation of solution of water saturated with aniline

Addition distilled water to the reactor isothermal and **temperature control.**

Addition volume of anhydride acetic reactor

At certain times 6 samples extracted and add them to an Erlenmeyer with aniline.

Extraction a final sample without aniline to calculate CA_o

BATCH REACTOR. REACTION ORDER

Comparative reaction order(n=1,2).

2nd semester

r²(n=1): 0.9832,0.9929, 0.9942

$$[A] = [A_0]e^{-a \cdot k \cdot t}$$

r²(n=2): 0,8024, 0.8917,0.8925

$$\frac{1}{[A]} = \frac{1}{[A_0]} + a \cdot k \cdot t$$

BATCH REACTOR. K FITTING

The processing of data gives us an order reaction n=1

2nd semester

Temperatures(°C) : 19 <**T** < 33

r²: 0.994919

$$[A] = [A_0]e^{-a \cdot k \cdot t}$$

Ea calculation

Group 6, 2nd semester

$$k = k_0 \cdot e^{\frac{-E_a}{R \cdot T}}$$

Fitting first-order k is good and the trend with T seems to fit well Arrhenius model

FITTING BATCH DATA TO ARRHENIUS (I)

$$k = k_0 \cdot e^{\frac{-E_a}{R \cdot T}}$$

In k Batch

◆ Grup 1

■ Grup 2

x Grup 5

Grup 6

+ Grup 7

- Grup 8

Cummulative effect of titration and T measuremet gives dispersion

FITTING BATCH DATA TO ARRHENIUS (II)

Ea vs Ln k (min-1) References

Experimental dispersion is similar to some ranges of reference data

METHODOLOGY CONTINOUS SYSTEM SETUP

$$vo = Q + q$$

$$C_{Ao} = \frac{q \cdot d \cdot M}{vo}$$
 Theoretical

Check the steady state of water flow (Q) by measuring it

Sample output dissolution each 10 minutes let 10 min more to ensure complete hydrolysis and titrate to **determine CAo**

$$\frac{C_{A0}}{C_A}=1+k\tau$$

$$k \cdot \tau = \frac{X_A}{1 - X_A}$$

When CAo is constant steady state has been reached. Extract 3 samples and block with aniline

Titrate to obtain data to calculate CA, XA and K

FITTING CONTINUOUS DATA-CONTROL QUALITY

The comparison of theoretical and experimental initial concentration of anhydride acetic the reactor could be used as a "quality control" of the performance of the session

$$C_{Ao} = \frac{q \cdot d \cdot M}{vo}$$
 Theoretical

1st semester

Control and measuremet of **vo** is a key parameter to get good results

2nd semester

FITTING CONTINUOUS DATA- K CALCULATION

Fittings work quite well, but K are different between semesters

$$K=0,0027-0,0044 \text{ s}^{-1}$$

6

Tiempo remanente [min]

8

10

12

0,3

0,2

2

4

2nd semester

$$K=0.09 \text{ min}^{-1}=0.0015 \text{ s}^{-1}$$

BATCH, CONTIUOUS, REFRENCE DAT DATA

First-order k values- 2nd semester

Comparison batch-continuous give a broad range of k values due to dispersion but are of the same order of magnitude than literature

CONCLUSIONS

- Project-based learning could be implemented easily in experimental subjects
- For batch: Control of titration and sampling time needed to decrease dispersion. Order and K values good.
- Very disperse fitting of Arrhenius. Range of k values batch and continuous.
- For continuous: Control of titration, sampling time and \mathbf{v}_{o} needed to decrease dispersion. CAo and K values good to obtain with disperse values.
- Using this experimental approach opens the possibility to learn a methodology based on theoretical and experimental correlation of different subjects and have a unique final vision of the same reaction.

ACKNOWLEDGEMENTS

- All the students of the subject "Experimentació Enginyeria Química, II" in the course 2014-2015
- Dra. Mª Àngels Larrayoz, Dr. Jordi Bou and Dr. Joaquim Casal who prepared the way to develop this work