Master Programs in Canada: A Catalan-Canadian perspective (visió d'un professor)

M. Secanell

Energy Systems Design Lab
(<u>www.esdlab.mece.ualberta.ca</u>)
Mechanical Engineering Department
University of Alberta

2ª Jornada de Docència a l'ETSEIB Dimecres, 8 de Febrer, 2017

Overview

- Why does traveling matter?
 - ☐ My experience from ETSEIB to Alberta (and out of Alberta)
- > The logistics of an MSc in a Canadian university
 - ☐ University of Alberta MSc requirements
- What does an MSc in my research laboratory look like?
- UPC-UAlberta exchange program
- Conclusions

From ETSEIB alumni to UAlberta professor

- > 1997-98: First year in Mechanical Engineering (Enginyeria Industrial) @ ETSEIB
- 2000-01: UPC-UVic (University of Victoria, Canada) undergraduate exchange program
- 2001-02: Finish Enginyeria Industrial @ ETSEIB
- > 2002-04: Master of Applied Science @ UVic
- > 2004-08: Doctor of Philosophy (PhD) @ UVic
- 2008-09: Post-doctoral fellow at NRC-IFCI (National Research Council Canada – Institute of Fuel Cell Innovation, Vancouver)
- > 2009-15: Assistant (09-14) and Associate professor at UAlberta (Edmonton, Canada)
- 2015-16: Visiting scholar at Lawrence Berkeley National Laboratory (Berkeley, US)
- > 2016-Present: Associate professor @ UAlberta

Edmonton, CA

Why does traveling matter?

Every trip resulted in new knowledge English proficiency
☐ Numerical methods (finite elements/optimization/fuel cell analysis)☐ Fuel cell testing
 My own research team: From independent research to being at the helm Three-dimensional characterization of porous media, x-ray imaging
Every trip resulted in a new (life) experience
☐ From living with family to new roommates (and how independence leads to happiness)
From living with roommates to girlfriend/wife (a.k.a. why commitment is important)
☐ From girlfriend/wife to new roommates (a.k.a. you most escape "the comforzone" trap)
In between many, many lab mates from all over the world (a.k.a. why everyone deserves respect irrespective of race, religion and culture)
 My lab composition: Canada, Catalonia, India, China, Germany, Russia, Ghana, US

University of Alberta

- ➤ The University of Alberta is a public research university located in Edmonton, Alberta, Canada.
 - ☐ Number of undergraduate and graduate students: 30,626 and 7,204
 - ☐ The Academic Ranking of World Universities, the QS World University Rankings and the Times Higher Education World University Rankings rate it as:
 - one of the top five universities in Canada
 - o one of the top 100 universities worldwide.

Graduate Studies at the University of Alberta

- ➤ MSc and PhD students are **not** undergraduate students
 - ☐ Undergraduate students registered in the Faculty of Engineering
 - ☐ MSc and PhD students register in the Faculty of Graduate Studies (even though they do their degree in the Faculty of Engineering)
- ➤ MSc and PhD students constitute a **select** percentage of the student population
 - ☐ Faculty of Engineering:
 - Graduate to undergraduate ratio (in engineering): 1:4
 - Ratio of PhD and MSc students per faculty (in engineering):
 1:3.3 and 1:2.7

Graduate Studies at UAlberta: Mechanical Engineering

- ➤ Six programs: Mechanical Engineering and Engineering Management
 - ☐ Master of Engineering (M.Eng.) course-based program
 - ☐ Master of Science (M.Sc.) thesis-based program
 - ☐ Doctor of Philosophy (Ph.D.)
- ➤ The Fall 2016 enrolment consisted of 265 students across the six programs
- My focus today: Master of Science (M.Sc.) thesisbased program

MSc at UAlberta: Mechanical Engineering

Minimum GPA requirement to enter the program is 3.0 ☐ Equivalent to having grades that are at least in the top 50% of the class Only the most qualified/interested should attend graduate school > Students in all programs are required to complete ☐ Five graduate level courses. Students must maintain a minimum cumulative grade point average of 3.0 on the 4.0 scale. ☐ Formal ethics and academic integrity training. ☐ An individualized professional development plan (IDP) and undertake 8 hours of professional development training ☐ A thesis (100-150 page summary of a one-year research project) Examples: See http://www.esdlab.mece.ualberta.ca/publications.php#theses ☐ Oral thesis defense For more info see the graduate manual: http://www.mece.engineering.ualberta.ca/en/~/media/mece/Graduat

e/Documents/GraduateProgramManualMechanicalEngineering.pdf

MSc at UAlberta: Mechanical Engineering

- MSc (and PhD) students transition from students to colleagues
 - ☐ MSc and PhD students have the following financial resources available
 - Research assistantship
 - Teaching assistantship
 - Scholarships (both for domestic and international students)
 - ☐ For students to receive funding they must be registered in the UAlberta program

Energy Systems Design Laboratory (ESDLab)

- MSc at UAlberta
 - ☐ Learning is achieved via mentoring:
 - Weekly meetings with research team
 - Bi-weekly meetings with research advisor to discuss progress
 - Monthly reports to supervisor (me) to assess progress and gather feedback
 - ☐ Schedule:
 - First day: Student gets assigned a desk, computer and introduced to the program and my research team
 - Year 1: Courses and start research
 - Fall: Take two courses, laboratory safety training and discussion on research topic
 - Winter: Take two courses, starts research and teaching assistantship
 - Summer: Student works full time on research
 - Year 2: Research only
 - Fall: Student takes last graduate course and continues research
 - Winter: Research and teaching assistantship
 - Summer: Write thesis and journal publications

Energy Systems Design Laboratory (ESDLab)

Three main research areas with numerical and experimental experitse

Computational Design and Optimization of Energy Systems

- Fuel cell parameter estimation
- Fuel cell and flywheel optimization

Computational Analysis of Energy Systems

- Fuel cells
- Flywheels
- Numerical experiments

Experimental Testing of Energy Systems

- Fuel cells
- Electrolyzers
- Flywheels
- Ex-situ characterization

UPC – UAlberta exchange program

- ➤ In 2010, UPC-ETSEIB and UAlberta signed a memorandum of understanding to permit two students to spend one year at the host institution:
 - ☐ 2 master students in the area of Energy spend a year at UAlberta to write their thesis
 - ☐ Students pay tuition at UPC-ETSEIB but are registered as students at UAlberta
 - Tuition at UAlberta: \$8,790 (international)
 - ☐ Students present master thesis in Alberta and submits at ETSEIB

Conclusions

- > Traveling to other countries (for extended periods of time) is a great way to learn engineering and grow as an individual
- ➤ In Canada, master programs are optional and only taken by a selected few
- Master students are trained by a combination of courses and mentorship
- ➤ Master students are expected to perform independent research (unless it is a course-based master)
- ➤ If you want to experience what it is like to be a graduate student in Canada, there is a program for you
 - ☐ Traveling abroad can lead to new opportunities and career paths

Acknowledgements

Visiting MSc student

Post-doctoral fellow

Visiting MSc student

THANK YOU

Energy Systems Design Laboratory (ESDLab)

- Located in
 - ☐ University of Alberta (top 5 in Canada)
 - ☐ Edmonton, AB, Canada
 - 4 hours to Jasper and Banff National Parks
- Three main research areas:

Computational Design and Optimization of Energy Systems

- Fuel cell parameter estimation
- Fuel cell and flywheel optimization

Computational Analysis of Energy Systems

- Fuel cells
- Flywheels
- Numerical experiments

Experimental Testing of Energy Systems

- Fuel cells
- Electrolyzers
- Flywheels
- Ex-situ characterization

Experimental Facilities

- Wet laboratory for catalyst layer fabrication
 - Ultrasonication bath and homogenisers
 - Hot press for decal transfer
 - Automatic film coat applicators
 - Material inkjet printer for CL deposition
 - □ Access to SEM, TEM, Microfab lab
- Porous media characterization
 - Mercury intrusion porosimetry
 - Permeability and effective oxygen diffusivity determination setup
 - Liquid permeation
- Fuel cell in-situ and ex-situ testing
 - Fuel cell assembly facilities
 - 2 Fuel cell testing systems
 - 2 Potentiostats/Galvanostats
- Other
 - Environmental chamber
 - Access to high performance computing

Course Offerings: Mechanical Engineering

- ➤ MEC E 537 Aerodynamics
- ➤ MEC E 539 Applied Computational Fluid Dynamics
- MEC E 541 Combustion Engines
- MEC E 551 Mechanics and Control of Robot Manipulators
- MEC E 553 Acoustics and Noise Control
- MEC E 563 Finite Element Method for Mechanical Engineering
- MEC E 564 Design and Simulation of MEMS
- MEC E 569 Mechanics and Design of Composite Materials
- ➤ MEC E 606 Photonics Measurement Systems in Fluid Mechanics
- MEC E 607 Optical-Mechanical Sensing
- MEC E 615 Control Methods in Partial Differential Equations
- ➤ MEC E 620 Combustion

Course Offerings: Mechanical Engineering (2)

- ➤ MEC E630 Fluid Dynamics
- MEC E631 Microfluidics and Nanofluidics
- MEC E632 Turbulent Fluid Dynamics
- MEC E633 Particle Engineering
- MEC E634 Aerosol Science and Technology
- MEC E635 Mechanics of Respiratory Drug Delivery
- MEC E636 Environmental Fluid Mechanics
- MEC E637 Colloidal Hydrodynamics
- MEC E638 Vortex Flows
- MEC E639 Computational Fluid Dynamics
- MEC E640 Analytical Thermodynamics
- MEC E643 Renewable Energy Engineering and Sustainability

Course Offerings: Mechanical Engineering (3)

- ➤ MEC E645 Transport and Kinetic Processes in Electrochemical Systems
- ➤ MEC E650 Analytical Dynamics
- MEC E651 Advanced Robotics: Analysis and Control
- MEC E653 Signal Processing of Time and Spectral Series
- ➤ MEC E655 Dynamics of Structures
- ➤ MEC E656 Wave Propagation in Structures
- ➤ MEC E662 Introduction to Polymer Microfabrication
- MEC E663 Theory and Applications of Finite Element Method
- ➤ MEC E664 Advanced Design and Simulation of Micro and Nano Electromechanical Sensors (MEMS/NEMS)
- MEC E667 Life Cycle Assessment
- MEC E668 Design of Experiments in Mechanical Engineering
- MEC E671 Heat Conduction

Course Offerings: Mechanical Engineering (4)

- ➤ MEC E673 Heat Convection
- MEC E680 Continuum Mechanics
- ➤ MEC E681 Elasticity
- MEC E682 Nanomechanics
- ➤ MEC E683 Statistical Mechanics with Applications
- ➤ MEC E684 Static and Dynamic Stability
- ➤ MEC E685 Macro Fracture Mechanics
- ➤ MEC E687 Introduction to Impact Dynamics of Materials
- ➤ MEC E688 Mechanics of Biological Tissues
- MEC E690 Analytical Techniques in Engineering
- ➤ MEC E692 Fundamentals of Numerical Analysis

Course Offerings: Engineering Management

- > ENG M 501 Production and Operations Management
- > ENG M 508 Energy Auditing and Management
- > ENG M 510 Quality Engineering and Management
- > ENG M 514 Reliability Engineering
- > ENG M 516 Maintenance Management
- > ENG M 530 Engineering Project Management
- > ENG M 540 Intro to Optimization Models and Algorithms
- > ENG M 541 Modeling and Simulation of Engg Systems
- > ENG M 558 Ergonomics and Work Design
- ➤ ENG M 605 Computer-Aided Product Modeling
- > ENG M 607 Lean Manufacturing
- ➤ ENG M 611 Design/Integration of Standardized Systems

Course Offerings: Engineering Management (2)

- ➤ ENG M 612 Quality Assurance and Assessment Systems
- ENG M 620 Engineering Economic Analysis
- ➤ ENG M 630 Project Management Techniques
- > ENG M 632 Project Risk Management
- > ENG M 641 Optimization of Large Scale Linear Problems
- ENG M 643 Energy Simulation and Modeling
- ENG M 646 Engineering Optimization
- > ENG M 650 Managing in a Technology Environment
- > ENG M 655 Personality Theory and Technical Management
- > ENG M 657 Interpersonal Skills for Project Managers
- > ENG M 665 Intellectual Property & Tech. Commercialization
- > ENG M 666 Knowledge Management

